Material Safety Data Sheet

VRLA Legacy Platinum Motive Power Battery

PREPARED BY: A.L. Csontos, Director-Environmental Engineering
MANUFACTURER: Douglas Battery Manufacturing Company
PRODUCT INFORMATION (800) 368-4527
Date Prepared: 06/07
500 Battery Drive, Winston-Salem, NC 27107
INTERNET ADDRESS: www.douglasbattery.com

THE INFORMATION BELOW IS BELIEVED TO BE ACCURATE AND REPRESENTS THE BEST INFORMATION CURRENTLY AVAILABLE TO US. HOWEVER, WE MAKE NO WARRANTY OF MERCHANTABILITY OR ANY OTHER WARRANTY, EXPRESS OR IMPLIED, WITH RESPECT TO SUCH INFORMATION, AND WE ASSUME NO LIABILITY RESULTING FROM ITS USE. USERS SHOULD MAKE THEIR OWN INVESTIGATIONS TO DETERMINE THE SUITABILITY OF THE INFORMATION FOR THEIR PARTICULAR PURPOSES.

SECTION 1 – IDENTITY

Common Name: Valve-Regulated Lead/Acid Battery
Chemical Name: Lead/Acid Storage Battery
Product Use: Electric storage battery for motive power
DOT Shipping Name: UN 2800, Battery, Wet, Non-Spillable, 8, PG III

SECTION 2 – HAZARDOUS INGREDIENTS

<table>
<thead>
<tr>
<th>Principal Hazardous Component(s) (Chemical & common name(s))</th>
<th>C.A.S.</th>
<th>Hazard Category</th>
<th>%</th>
<th>ACGIH TLV</th>
<th>OSHA PEL/TWA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead (Metallic)/Lead Dioxide</td>
<td>7439-92-1</td>
<td>Acute-Chronic</td>
<td>70-80%</td>
<td>0.15 mg/m³</td>
<td>0.05 mg/m³</td>
</tr>
<tr>
<td>Arsenic</td>
<td>7440-38-2</td>
<td>Acute-Chronic</td>
<td><0.1%</td>
<td>0.2 mg/m³</td>
<td>0.01 mg/m³</td>
</tr>
<tr>
<td>Tin (Inorganic)</td>
<td>7440-31-5</td>
<td>Chronic</td>
<td>< 2.0%</td>
<td>2.0 mg/m³</td>
<td>2.0 mg/m³</td>
</tr>
<tr>
<td>Calcium</td>
<td>7440-70-2</td>
<td>Reactive</td>
<td>< 0.1%</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Sulfuric Acid/Battery Electrolyte (% sulfuric acid in electrolyte by weight)</td>
<td>7664-93-9</td>
<td>Acute-Chronic Corrosive, Oxidizer</td>
<td>15-25%</td>
<td>1.0 mg/m³</td>
<td>1.0 mg/m³</td>
</tr>
</tbody>
</table>

NOTE: Exposure to these materials will not occur under normal conditions of use. This Product description or Tradename contains toxic chemicals subject to reporting requirements under Section 313 of Title III the “Superfund Amendments and Reauthorization Act” of 1986 and 40 CFR 372 and California Proposition 65.

SECTION 3 – PHYSICAL & CHEMICAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>Physical Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boiling Point</td>
<td>Electrolyte Approx. 235°F</td>
</tr>
<tr>
<td>Melting Point</td>
<td>Polypropylene >320°F</td>
</tr>
<tr>
<td>Vapor Pressure</td>
<td>Electrolyte Approx. 10 mm Hg</td>
</tr>
<tr>
<td>Specific Gravity</td>
<td>Approx. 1.285</td>
</tr>
<tr>
<td>Percent Volatile</td>
<td>None by Volume (%)</td>
</tr>
<tr>
<td>Solubility in Water</td>
<td>Lead & lead dioxide are not soluble</td>
</tr>
<tr>
<td>Appearance</td>
<td>Battery: Rectangular polypropylene jars in steel case with metallic lead terminals & connectors.</td>
</tr>
<tr>
<td>Physical State</td>
<td>Solid, Non-spillable</td>
</tr>
<tr>
<td>pH</td>
<td>Electrolyte <1</td>
</tr>
<tr>
<td>Flash Point</td>
<td>Polypropylene Case 675°F</td>
</tr>
<tr>
<td>Flammable Limits</td>
<td>In Air (% Hydrogen): Lower 4.1% Upper 74.2%</td>
</tr>
<tr>
<td>Extinguisher Media</td>
<td>CO₂, foam, dry chemical</td>
</tr>
<tr>
<td>Special Fire</td>
<td>Extinguish fire with agent suitable for surrounding combustible materials. Cool exterior of battery if exposed to fire to prevent or mitigate release of lead compounds and fumes.</td>
</tr>
<tr>
<td>Fighting Procedures</td>
<td>Unusual Fire and Explosion Hazards: Ensure adequate ventilation and proper charging rates to avoid damage to cells and excessive generation of potentially flammable or explosive amounts of hydrogen gas.</td>
</tr>
</tbody>
</table>

MSDS – 1011
SECTION 4 – PHYSICAL HAZARDS

Stability: Stable

Incompatibility: Keep battery case away from strong oxidizers, solvents.

(Hazardous Materials to Avoid)

Hazardous Decomposition Products: None

Hazardous Polymerization: Will Not Occur

SECTION 5 – HEALTH HAZARDS

Threshold Limit Value (TLV) Permissible exposure limit (PEL)

Sulfuric Acid TLV 1.0 mg/m³ (milligram per cu. meter) PEL 1.0 mg/m³

Lead TLV 0.15 mg/m³ PEL 0.05 mg/m³

Signs and Symptoms of Exposure

Exposures to sulfuric acid (battery electrolyte), lead, lead dioxide, or lead sulfate may occur if the sealed battery case is damaged.

Exposure to lead and lead compounds may include:

1. Chronic overexposure: Tire easily, loss of appetite, irritability, metallic taste, insomnia, toxic to nervous system, kidneys, and reproductive system

2. Acute overexposure: Constipation, vomiting, blue gum line, weakness of wrists and ankles, weight loss, yellowish skin.

Exposure to sulfuric acid (battery electrolyte) may produce:

1. Chronic overexposure: Inhalation—erosion of teeth, inflammation of nose, throat, and bronchial tubes.

2. Acute overexposure: Eyes—severe burns, cornea damage, blindness. Skin—severe irritation, burns, ulceration. Inhalation—respiratory irritation, inflammation of bronchial membranes. Ingestion—severe burns and ulceration of mouth, throat, esophagus and stomach, damage to kidney and intestinal tract.

Medical Conditions Generally Aggravated by Exposure:

Respiratory exposure to airborne sulfuric acid will aggravate lung damage or other pulmonary conditions. Harmful effects of lead are increased for a person with dietary deficiencies in calcium, iron, and zinc.

Routes of Entry:

Lead: ingestion, inhalation Sulfuric acid: contact with skin, eyes; inhalation, ingestion

Cancer Potential:

The International Agency for Research on Cancer (IARC) has classified “strong inorganic acid mist containing sulfuric acid” as a Category 1 carcinogen, a substance that is carcinogenic to humans. The ACGIH has classified “strong inorganic acid mist containing sulfuric acid” as an A2 carcinogen or suspected human carcinogen. These classifications do not apply to liquid forms of sulfuric acid. Sulfuric acid mist is not generated under normal use of this battery product. Overcharging may result in the generation of sulfuric acid mist. Lead and inorganic lead compounds are classified by the IARC in Group 2B as possible carcinogens to humans on the basis of animal studies.

Emergency and First Aid Procedures

Lead/lead compounds exposure

1. Inhalation: Remove from exposure, see physician.
2. Eyes: Wash eyes with copious quantities of running water for 15 minutes. Obtain medical attention.
3. Skin: Not a direct route of entry.
4. Ingestion: See Physician.

Sulfuric acid exposure

1. Inhalation: Remove to fresh air, see physician immediately. If person is unconscious, perform CPR, keep victim warm and at rest, if breathing is difficult, give oxygen.
2. Eyes: Wash eyes with large amount of water for 15 minutes or until acid is removed. Hold lids open while washing. See physician.
3. Skin: Remove all contaminated clothing, flush skin with large quantities of water until free of acid.
4. Ingestion: Do not induce vomiting, do not give anything by mouth to an unconscious person, see physician immediately.

SECTION 6 – SPECIAL PROTECTION INFORMATION

Respiratory Protection: Under normal handling conditions respiratory protection is not required. If product is involved in fire or damaged, release of dust, fumes or electrolyte may result. Use of SCBA, full face or half-mask respirator with HEPA cartridge would be recommended.

Protective Equipment: Use leather or other acid resistant gloves to minimize lead contamination if handling broken units. Use safety glasses and face shield or goggles for handling broken or damaged product.

SECTION 7 – SPECIAL PRECAUTIONS AND SPILL / LEAK PROCEDURES

Precautions to Be Taken: Exercise caution in handling and storage due to weight of units. Store batteries with adequate ventilation. Do not charge batteries in an unventilated, enclosed space. Do not remove vent caps; to avoid damage to terminals and seals do not double stack or store materials on top of industrial batteries.

Other Precautions: Do not allow metal or other conductive material to short circuit terminals. Heat, sparks, damage to electrical circuits, and fire potential may result from short circuiting. Practice good hygiene to minimize personal exposure. Wash hands thoroughly after handling product. Battery may release hydrogen during charging if exposed to high ambient temperatures. Do not store in air-tight container.
Steps to Be Taken in Case of Material Release or Spill:
Internal materials will not be released unless sealed case is damaged. Pick up and containerize all battery parts and residues. Limit personal exposures with gloves, eye, and face protection, as noted above. Neutralize sulfuric acid/electrolyte with lime, soda ash (sodium bicarbonate) or suitable commercial spill containment product. Wash exposed skin areas thoroughly following spill cleanup.

Waste Disposal:
Battery and battery parts should be returned to the distributor, manufacturer or permitted recycling facility for recycling. Follow state and federal regulations for packaging and transporting used batteries.

MSDS - 1011